skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhuo, Cheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. Free, publicly-accessible full text available May 1, 2026
  3. Biologically detailed models of brain circuitry are challenging to build and simulate due to the large number of neurons, their complex interactions, and the many unknown physiological parameters. Simplified mathematical models are more tractable, but harder to evaluate when too far removed from neuroanatomy/physiology. We propose that a multiscale model, coarse-grained (CG) while preserving local biological details, offers the best balance between biological realism and computability. This paper presents such a model. Generally, CG models focus on the interaction between groups of neurons—here termed “pixels”—rather than individual cells. In our case, dynamics are alternately updated at intra- and interpixel scales, with one informing the other, until convergence to equilibrium is achieved on both scales. An innovation is how we exploit the underlying biology: Taking advantage of the similarity in local anatomical structures across large regions of the cortex, we model intrapixel dynamics as a single dynamical system driven by “external” inputs. These inputs vary with events external to the pixel, but their ranges can be estimateda priori. Precomputing and tabulating all potential local responses speed up the updating procedure significantly compared to direct multiscale simulation. We illustrate our methodology using a model of the primate visual cortex. Except for local neuron-to-neuron variability (necessarily lost in any CG approximation) our model reproduces various features of large-scale network models at a tiny fraction of the computational cost. These include neuronal responses as a consequence of their orientation selectivity, a primary function of visual neurons. 
    more » « less
  4. Deep random forest (DRF), which combines deep learning and random forest, exhibits comparable accuracy, interpretability, low memory and computational overhead to deep neural networks (DNNs) in edge intelligence tasks. However, efficient DRF accelerator is lagging behind its DNN counterparts. The key to DRF acceleration lies in realizing the branch-split operation at decision nodes. In this work, we propose implementing DRF through associative searches realized with ferroelectric analog content addressable memory (ACAM). Utilizing only two ferroelectric field effect transistors (FeFETs), the ultra-compact ACAM cell performs energy-efficient branch-split operations by storing decision boundaries as analog polarization states in FeFETs. The DRF accelerator architecture and its model mapping to ACAM arrays are presented. The functionality, characteristics, and scalability of the FeFET ACAM DRF and its robustness against FeFET device non-idealities are validated in experiments and simulations. Evaluations show that the FeFET ACAM DRF accelerator achieves ∼106×/10× and ∼106×/2.5× improvements in energy and latency, respectively, compared to other DRF hardware implementations on state-of-the-art CPU/ReRAM. 
    more » « less